Abstract Submitted for the DFD12 Meeting of The American Physical Society

Nonlinear electrokinetic repulsion effects in combined electroosmotic and Poiseuille flow through microchannels¹ NECMETTIN CEVHERI. MINAMI YODA, Georgia Institute of Technology — Recent evanescent-wave particle velocimetry studies in electrokinetically driven flow where aqueous solutions are driven by an electric field of magnitude E, have shown that the radius a = O(0.1-1) μ m) particle tracers suspended in the solution are subject to a wall-normal force that drives particles away from the wall [Kazoe & Yoda, Langmuir 27:11481]. The magnitude of this force appears to scale as E^2 and a^2 , albeit over a limited range of E and a, suggesting that particles of different sizes will have different average wall-normal positions, and hence sample different velocity distributions in a shear flow. To verify this hypothesis, evanescent-wave particle velocimetry was used to measure near-wall particle distributions and velocities of $a = 0.2 \ \mu m$ and $0.5 \ \mu m$ particles in the combined electroosmotic and Poiseuille flow of a bidisperse dilute aqueous solution through fused-silica channels about 30 μ m deep for E < 45 V/cm and pressure gradients $\Delta p/L \leq 1.3 \text{Bar/m}$. To evaluate the whether this nonlinear electrokinetic force can be used separate particles based on their size, near-wall particle distributions for both particle sizes were measured at different streamwise locations in the combined flow.

¹Supported by ARO and NSF

Minami Yoda Georgia Institute of Technology

Date submitted: 03 Aug 2012

Electronic form version 1.4