Abstract Submitted for the DFD12 Meeting of The American Physical Society

The Influence of Injection Angle on Bubble Formation from a Micro-Pillar FARZAD HOUSHMAND, DAREN ELCOCK, YOAV PELES, Rensselaer Polytechnic Institute — Bubble formation in a microchannel in the presence of a 150 $\mu \rm m$ diameter micro-pillar was investigated. Nitrogen stream was injected into water flow in a 225 $\mu \rm m$ deep, 1500 $\mu \rm m$ wide, and 27.5 mm long horizontal microchannel through 20 $\mu \rm m$ slits cut on the micropillar located vertically in the centerline of the channel. Bubble formation in different devices with varying slit angles—with respect to liquid flow—of 0 $^{\circ}$, ± 30 $^{\circ}$, ± 80 $^{\circ}$, ± 110 $^{\circ}$, and 180 $^{\circ}$ were studied for liquid flow rates of 13, 34 and 54 ml/min, and gas flow rates ranging from 0.5 to 7 ml/min. Based on high speed high magnification imaging, three distinct formation modes were observed depending on the slit angle and liquid and gas flow rates: discrete bubbling, attached ligament, and mixed modes. Micro-PIV technique was used to study the liquid flow in vicinity of the pillar to elucidate the phenomena controlling bubble formation.

¹This work is supported by the Office of Naval Research (Program Manager Dr. Mark Spector).

Farzad Houshmand Rensselaer Polytechnic Institute

Date submitted: 07 Aug 2012 Electronic form version 1.4