Abstract Submitted for the DFD12 Meeting of The American Physical Society

Regenerative centrifugal instability on a vortex column ERIC STOUT, FAZLE HUSSAIN, University of Houston — The limitation and renewal of centrifugal instability of a vortex column (due to a sheath of negative axial vorticity, $-\Omega_z$, surrounding the $+\Omega$ core, i.e. a circulation overshoot) is studied via the transport dynamics of perturbations to the initially unstable vortex using DNS of the incompressible Navier-Stokes equations for a range of vortex Reynolds numbers (Re=circulation/viscosity). Any radial perturbation vorticity, ω'_r , is tilted by the column's mean shear to form filaments with azimuthal vorticity, ω'_{θ} , generating positive Reynolds stress, +u'v' (u',v' are the radial and azimuthal perturbation velocities), required for energy growth. This ω'_{θ} in turn tilts Ω_z to amplify ω'_r (and consequently ω'_{θ}) – thus causing instability. Limitation of ω'_r growth, thus also energy production, occurs as the perturbation transports angular momentum (rV)radially outward from the overshoot, moving the overshoot outward, hence lessening and shifting Ω_z , while also transporting core $+\Omega_z$, around the location of the filament. After the overshoot shifts, tilting of Ω_z reverses ω'_r (hence reducing ω'_{θ}), causing the filament to generate -u'v', i.e. energy decay, and hence self-limitation of growth. Associated with -u'v' is the filament's radially inward transport of rV, which can produce a new circulation overshoot and renewed instability. New overshoot formation and renewed generation of +u'v' is examined using a helical (m = 1) mode – a promising scenario for regenerative transient growth and possible turbulence generation on a vortex column.

> Eric Stout University of Houston

Date submitted: 03 Aug 2012

Electronic form version 1.4