Numerical simulation of reversing buoyancy gravity currents
SENTHIL RADHAKRISHNAN, UC Santa Barbara, ERIK LENK, Westsaechsische Hochschule Zwickau, MICHAEL BOEKELS, RWTH Aachen, ECKART MEIBURG, UC Santa Barbara — Sediment laden fluid propagates as an underflow when its bulk density is higher than the density of the ambient fluid. If the density of the interstitial fluid in gravity current is smaller than the density of the ambient fluid, the gravity current can become positively buoyant after sufficient particles have settled. The current then lifts off from the bottom surface and travels as a surface gravity current over the heavier ambient fluid. These types of currents, where the buoyancy reverses its direction, have been observed when sediment laden fresh water enters the sea or during volcanic eruption that creates a pyroclastic flow. We use a lock-exchange configuration with mono-disperse and bi-disperse particles to study the lofting characteristics of reversing buoyancy currents. This talk will focus on results obtained from Large-eddy Simulation of high Reynolds number currents. In particular, the deposit profiles show a sharp decay at the lift-off point unlike a ground hugging turbidity current whose deposit profile has a slow monotonic decay from the lock region.