Simulating Primary Atomization at Arbitrary Density Ratios: a Stable and Conservative Framework

VINCENT LE CHENADEC, Stanford University, HEINZ PITSCH, Institute for Combustion Technology, RWTH Aachen

The present work focuses on two recent developments for Direct Numerical Simulation of two-phase flows, and their application to computations of turbulent primary atomization of liquid jets at large density ratios. Mass conservation properties of the algorithm are improved by means of a second-order unsplit Volume-of-Fluid method coupled to the Level Set approach. The three-dimensional volume fraction transport scheme is shown to reduce numerical artifacts known to pollute the interface representation in under-resolved regions of the flow. In the interface vicinity, the momentum conservation as well as stability of the flow solver are guaranteed by a monotonicity preserving geometric transport of the momentum, defined consistently with the volume fraction transport. Away from the interface, the flux computation is switched to a centered discretization in order to avoid excessive numerical dissipation. This framework is assessed in a set of validation cases, and applied to simulate the primary atomization of a turbulent round jet in quiescent gas at air/water density ratio and moderate Reynolds and Weber numbers.

Vincent Le Chenadec
Center for Turbulence Research, Stanford University

Date submitted: 03 Aug 2012

Electronic form version 1.4