Visualization of Capsule Reentry Vehicle Heat Shield Ablation using Naphthalene Planar Laser-Induced Fluorescence Imaging

CHRISTOPHER COMBS, NOEL CLEMENS, The University of Texas at Austin,
PAUL DANEHY, NASA Langley Research Center — NASA has continued interest in the study of ablation owing to the need to develop suitable thermal protection systems for spacecraft that undergo planetary entry. Ablation is a complex multiphysics process, and codes that predict it require a number of coupled submodels, each of which requires validation. For example, Reynolds-averaged Navier Stokes (RANS) and large-eddy simulation (LES) codes require models of the turbulent transport of ablation products under variable compressibility and pressure gradient conditions. A new technique has been developed at The University of Texas at Austin that uses planar laser-induced fluorescence (PLIF) of a low-temperature sublimating ablator (naphthalene) to enable visualization of the ablation products as they are transported in a boundary layer. While high temperature ablation is extremely difficult to recreate in a laboratory environment, low temperature ablation creates a limited physics problem that can be used to simulate the ablation process. In the current work a subscale capsule reentry vehicle model with a solid naphthalene heat shield is tested in a Mach 5 wind tunnel. PLIF imaging reveals the distribution of the ablation products as they are transported into the boundary layer and over the capsule shoulders.

1Work supported by NASA Space Technology Research Fellowship Program under grant NNX11AN55H.