Turbulence theory and infrared images falsify the 2011 Nobel Prize in Physics

CARL GIBSON, University of California at San Diego — Turbulence defined by the inertial vortex force explains Planck scale big bang processes as temporary, rendering a permanent Einstein cosmological constant \(\Lambda \) and a positive expansion rate of the universe driven by anti-gravitational dark energy forces unnecessary. Large kinematic viscosity stresses during the plasma epoch from \(10^{11} \) s to \(10^{13} \) s cause fragmentation by proto-super-cluster-voids at \(10^{12} \) s and proto-galaxies at the \(10^{13} \) s transition to gas. Fragmentation of gas proto-galaxies is at Earth-mass planet viscous scales in Jeans mass clumps of a trillion planets. These Proto-Globular-star-Clusters (PGCs) freeze to form the dark matter of galaxies according to the Gibson (1996) Hydro-Gravitational-Dynamics (HGD) theory, and as observed by Schild (1996) by quasar microlensing. White dwarf carbon stars explode as Supernovae Ia events (SNeIa) when their mass increases to 1.44 solar, providing the standard candles used to justify the Nobel Prize claim of a positive expansion rate. However, if all stars form from primordial planet mergers in PGC clumps as claimed by HGD cosmology, the SNeIa become subject to a systematic dimming error depending on the line of sight to the event. New space telescope infrared images strongly support HGD cosmology.