Abstract Submitted for the DFD13 Meeting of The American Physical Society

On the role of reduction by symmetry in understanding swimming at mid-Reynolds¹ HENRY JACOBS, Imperial College London — A number of numerical and experimental studies suggest suggest that swimming can be characterized as an emergent phenomena arising from time-periodic internal body forces. In particular, it seems reasonable to surmise that swimming can be characterized as a relative limit cycle. A relative limit cycle is a system trajectory with a time-period, wherein each period is related to the previous by the action of a Lie group. In the case of swimming in \mathbb{R}^n this Lie group is the set of rotations and translations, SE(n). In this talk we will describe a class of dissipative systems which admit relative limit cycles. Unfortunately, the Navier-Stokes equations coupled to a solids in \mathbb{R}^n are not within this class of. However, a Navier-Stokes- α fluid on the *n*-sphere, S^n , could resolve this issue. The relative limit cycles would be with respect to the group SO(n). In a very precise sense, the group SO(n) is to the S^n as SE(n)is to \mathbb{R}^n . As a result, the relative limit cycles obtained on \mathbb{S}^n , can be characterized as spatially localized manifestations of trajectories for systems in \mathbb{R}^n wherein each period related to the next by a rigid rotation and translation.

¹H.O.J. is supported by European Research Council Advanced Grant 267382 FCCA

Henry Jacobs Imperial College London

Date submitted: 09 Jul 2013

Electronic form version 1.4