Dynamics of evaporating sessile droplets1 PEDRO SÁENZ, PRASHANT VALLURI, KHELLIL SEFIANE, University of Edinburgh, GEORGE KARAPETSAS, University of Thessaly, JUNHO KIM, University of Maryland, College Park, OMAR MATAR, Imperial College London — A sessile droplet laying on a horizontal substrate evaporates into its surrounding gas. The dynamics of this physical system are investigated by means of 3D Direct Numerical Simulations and experiments. A non-isothermal two-phase model is employed to compute the spatio-temporal evolution of the system under consideration. Transient species transport in the gas phase is also accounted for via the general advection-diffusion governing equation. The interface mass transfer is computed considering that the vapour diffusion is the rate-limiting mechanism. On this premise, it is assumed that the liquid and the gas maintain thermodynamic quasi-equilibrium at the interface. The same system is also experimentally investigated by simultaneously recording the droplet evaporation in a controlled environment with a CCD camera (side) and an IR camera (top). Comparisons between numerical and experimental data are presented along with a discussion of the role played by other singularities of the system, namely the triple line, the effect of thermocapillarity, etc.

1Fundación Caja Madrid, EPSRC DTA & ThermaPOWER (EU IRSES-PIRSES GA-2011-294905)