Ligament breakup without surface tension

LIONEL VINCENT, LAURENT DUCHEMIN, STÉPHANE LE DIZÉS, EMMANUEL VILLERMAUX, Aix Marseille Université, IRPHE, Marseille, France — We study the breakup of an axisymmetric low viscosity liquid volume (ethanol and water), held by surface tension on supporting rods, when subject to a violent axial stretching. One of the rods is promptly set into a fast motion, either with constant acceleration, or constant velocity. In both cases, a thin ligament is withdrawn from the initial liquid volume, which eventually breaks-up at time t_b, leaving a liquid mass m attached to the moving rod. We find that the breakup time and entrained mass are related by $t_b \sim \sqrt{m/\sigma}$, where σ is the liquid surface tension. For a constant acceleration γ, and although the overall process is driven by surface tension, t_b is surprisingly found to be independent of σ, while m is inversely proportional to γ. The case with constant velocity will be considered too.

Emmanuel Villermaux
Aix Marseille Université, IRPHE, Marseille, France

Date submitted: 26 Jul 2013

Electronic form version 1.4