Nonlinear Scale Interactions and Energy Pathways in the Ocean

HUSSEIN ALUIE, MATTHEW HECHT, Los Alamos National Laboratory, GE-
OFFREY VALLIS, Princeton University and University of Exeter — Large-scale
currents and eddies pervade the ocean and play a prime role in the general cir-
culation and climate. The coupling between scales ranging from \(O(10^4) \) km down
to \(O(1) \) mm presents a major difficulty in understanding, modeling, and predicting
oceanic circulation and mixing, where the energy budget is uncertain within a factor
possibly as large as ten. Identifying the energy sources and sinks at various scales
can reduce such uncertainty and yield insight into new parameterizations. To this
end, we refine a novel coarse-graining framework to directly analyze the coupling
between scales. The approach is very general, allows for probing the dynamics si-
multaneously in scale and in space, and is not restricted by usual assumptions of
homogeneity or isotropy. We apply these tools to study the energy pathways from
high-resolution ocean simulations using LANL’s Parallel Ocean Program. We ex-
amine the extent to which the traditional paradigm for such pathways is valid at
various locations such as in western boundary currents, near the equator, and in the
deep ocean. We investigate the contribution of various nonlinear mechanisms to the
transfer of energy across scales such as baroclinic and barotropic instabilities.