Large-eddy simulations of real-fluid effects in rocket engine combustors

PETER C. MA, JEAN-PIERRE HICKEY, MATTHIAS IHME, Stanford University — This study is concerned with the LES-modeling of real-fluid effects in rocket combustors. The non-ideal fluid behavior is modeled using the Peng-Robinson equation of state, and high-pressure effects on the thermo-viscous transport properties are also considered. An efficient and robust algorithm is developed to evaluate the thermodynamic state-vector. The highly non-linear coupling of the primitive thermodynamic variables in regions near the critical point requires special consideration to avoid spurious numerical oscillations. To avoid these non-physical oscillations, a second-order essentially non-oscillatory (ENO) scheme is applied in regions that are identified by a density-based sensor. The resulting algorithm is applied in LES to a coaxial rocket-injector, and super- and transcritical operating conditions are considered. Simulation results and comparisons with experimental data will be presented, and the influence of boundary conditions on the mixing characteristics will be discussed.

Peter C. Ma
Stanford University

Date submitted: 31 Jul 2013

Electronic form version 1.4