Abstract Submitted for the DFD13 Meeting of The American Physical Society

Lateral migration of a 3D elastic capsule in a Poiseuille flow BOY-OUNG KIM, HYUNG JIN SUNG, Korea Advanced Institute of Science and Technology, KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY TEAM — The lateral migration of a 3D elastic capsule undergoing large deformation in a 3D Poiseuille flow was explored at moderate Reynolds number $(10 \le \text{Re} \le 100)$ as a function of the initial lateral position (v_0) , Reynolds number (Re), aspect ratio (ε) , viscosity ratio (λ) , membrane stretching coefficient (φ) and bending coefficient (γ) . Several numerical methods were used to simulate the problem: the immersed boundary method for fluid-structure interaction, the penalty method for volume conservation in the capsule and the front-tracking method for distinguishing the fluid in capsule from the fluid outside capsule. Three different types of capsule motions were observed: tank-treading (TT) motion, tumbling (TU) motion and swinging (SW) motion according to variations of ε and Re. The initial behavior of the elastic capsule was influenced by the initial lateral position (y_0) , but the equilibrium position and the dynamic motion of the capsule were not affected by such variations. The capsule had a strong tendency toward TU motion at higher values of Re, φ and γ , whereas the capsule underwent TT or SW motion as the values of ε and λ increased.

> Boyoung Kim Korea Advanced Institute of Science and Technology

Date submitted: 01 Aug 2013

Electronic form version 1.4