Estimating the pressure forcing on a flexible piezoelectric beams exerted by a passing vortex using time-resolved PIV data

OLEG GOUSHCHE, NIELL ELVIN, YIANNIS ANDREOPoulos, The City College of The City University of New York — A cantilever flexible beam instrumented with a piezoelectric patch and immersed in a fluid can be used to harvest fluidic energy. Pressure distribution induced by naturally present vortices in a turbulent fluid flow can force the beam to oscillate producing electrical current. Maximizing the power output of such an electromechanical fluidic system is a challenge. In order to understand the pressure force exerted on the beam in a fluid flow where vortices of different scales are present, an experimental facility was set up to observe the interaction of individual vortices with the beam and record the time-resolved PIV data around the beam. Using the time-resolved PIV data, the pressure Poisson equation is solved by using a Green function’s approach to obtain the pressure distribution over the beam. The beam is instrumented at the base with a piezoelectric patch, a strain gage and a force sensor whose output data are compared to the results from the pressure Poisson equation solution. A large negative pressure peak is observed as the vortex core travels over the beam responsible for the net lift force deflecting the beam towards the center of the vortex core.

1Sponsored by NSF Grant: CBET #1033117.