Abstract Submitted for the DFD13 Meeting of The American Physical Society

A hybrid RANS closure scheme for the near-wall turbulence¹ FARID KARIMPOUR, SUBHAS K. VENAYAGAMOORTHY, Colorado State University — In this study, we propose a parameterization for the eddy viscosity (ν_t) that can be employed in a wall-resolving standard k- ϵ closure model. To this end, we use the equilibrium assumption between the production rate of the turbulent kinetic energy (P) and ϵ in a wall-bounded turbulent flow. Using this assumption and the linear shear stress distribution, the appropriate velocity scale is $U_S = (\epsilon/S)^{1/2}$ while the corresponding length scale is $L_S = f_{\mu} \kappa y (1 - y/\delta)^{3/4}$, where κ is von Kármán's constant, f_{μ} is van Driest's damping function, y represents the vertical distance from the wall and δ is one half of the channel depth. Consequently, ν_t results as a product of these two characteristic scales, i.e. $\nu_t = U_S L_S$. 'A priori' tests are performed to assess the validity of the proposed eddy viscosity and the corresponding characteristic scales using the direct numerical simulation (DNS) data of unstratified channel flow. Furthermore, a one-dimensional standard k- ϵ model was developed and 'a posteriori' tests were performed. The comparison of both 'a priori' and 'a posteriori' tests with DNS data show excellent agreement.

¹Funded by the National Science Foundation

Farid Karimpour Colorado State University

Date submitted: 01 Aug 2013

Electronic form version 1.4