Electrokinetically driven reversible self-assembly of colloidal particle bands near the wall1 NECMETTIN CEVHERI, MINAMI YODA, Georgia Institute of Technology — Recent studies in microchannels have shown that the near-wall dynamics of neutrally buoyant dielectric colloidal (radii \(a < 1 \, \mu m \)) suspended particles are affected by an electric field of magnitude \(E \) applied parallel to the wall. Evanescent-wave particle velocimetry was used to study \(a = 245 \, nm \) fluorescent polystyrene particles suspended at volume fractions of \(O(10^{-4}) \) in combined electroosmotic (EO) and Poiseuille flow of an aqueous electrolyte solution, which is effectively the superposition of simple shear and uniform flows within 0.5 \(\mu m \) of the wall. In “counterflow,” where the EO opposes the shear flow through fused-silica microchannels, at a large enough value of \(E \) so that flow reversal occurs in the near-wall region, the particles self-assemble into concentrated bright “stripes” along the streamwise direction alternating with dark stripes containing almost no particles with a consistent cross-stream spatial frequency. These stripes are only observed within \(\sim 1 \, \mu m \) of the wall, and disappear in the absence of an electric field. These observations suggest the existence of a novel electrokinetic instability, and could lead to new methods for controlled self-assembly of particles into anisotropic colloidal crystals.

1Supported by NSF and ARO

Minami Yoda
Georgia Institute of Technology

Date submitted: 01 Aug 2013