Abstract Submitted for the DFD13 Meeting of The American Physical Society

A Web-Services accessible database for channel flow turbulence at $Re_{\tau}=1000^{1}$ J. GRAHAM, K. KANOV, E. GIVELBERG, R. BURNS, G. EYINK, A. SZALAY, C. MENEVEAU, Johns Hopkins University, M.K. LEE, N. MALAYA, R.D. MOSER, University of Texas — In this presentation we describe a new public database archiving a DNS data set of the space-time evolution of fully developed channel flow at $Re_{\tau} = 1000$. The database will contain data from a DNS of channel flow with domain-size of $8\pi \times 2 \times 3\pi$, at the resolution of $2048 \times 512 \times 1536$, with 2048 time-frames of velocity and pressure fields spanning about a flow-through time scale. After simulation, the data are ingested into the database cluster using a space-filling Morton-curve to index the computational space uniformly, and also to organize data partition and distribution. The database system allows users access and to process the data remotely through an interface based on the Web-Service model. Users are thus able to perform numerical experiments on the high-resolution DNS data using least capable desktop computers. Test calculations are performed to illustrate the usage of the system and to verify the correctness of the data. Construction of the database also involves developments of MPI-DB, a new tool to facilitate coupling of parallel simulations and databases.

¹Support provided, among others, from the National Science Foundation CDI-II grant CMMI-0941530.

Charles Meneveau Johns Hopkins University

Date submitted: 02 Aug 2013 Electronic form version 1.4