Abstract Submitted for the DFD13 Meeting of The American Physical Society

Analysis of Dragonfly Take-off Mechanism: Initial Impulse Generated by Aerodynamic Forces¹ RUIJIE ZHU², AYODEJI BODE-OKE³, YAN REN⁴, HAIBO DONG⁵, University of Virginia, FLOW SIMULATION RESEARCH TEAM — Take-off is a critical part of insect flight due to not only that every single flight initiates from take-off, but also that the take-off period, despite its short duration, accounts for a relatively large fraction of the total energy consumption. Thus, studying the mechanism of insect take-off will help to improve the design of Micro Air Vehicles (MAVs) in two major properties, the success rate and the energy efficiency of take-off. In this work, we study 20 cases in which dragonflies (species including *Pachydiplax longipennis, Epitheca Cynosura, Epitheca princeps* etc.) take off from designed platform. By high-speed photogrammetry, 3-d reconstruction and numerical simulation, we explore how dragonflies coordinate different body parts to help take-off. We evaluate how aerodynamic forces generated by wing flapping create the initial impulse, and how these forces help save energy consumption.

¹Supported by NSF CBET-1343154 ²Undergraduate Student ³Undergraduate Student ⁴Graduate Student ⁵Research Advisor

> Haibo Dong University of Virginia

Date submitted: 02 Aug 2013

Electronic form version 1.4