Thermal coherent sets and heat transfer in chaotic laminar flows
SHIBABRAT NAIK, Mitsubishi Electric Research Labs and Virginia Tech, PIYUSH
GROVER, Mitsubishi Electric Research Labs — The relation between the chaotic
nature of the advection flow field and heat transfer in laminar flow heat exchangers
is known to be subtle. We use the Perron-Frobenius transfer operator approach
to analyze thermal transport in a coiled tube with 3D laminar flow and Dirichlet
thermal boundary condition. The usual advection-only transfer operator is com-
bined with a finite-difference diffusion operator via an operator-splitting technique.
We compute various coherent sets of this approximate advection-diffusion operator.
These coherent sets correspond to the important “thermal structures” which gov-
ern the heat transfer in this problem. This analysis gives an insight into the effect
of chaotic advection field on the heat transfer performance of such devices. We
study the dependence of heat transfer enhancement factor on Peclet number. This
transfer operator based analysis could lead to systematic geometric optimization of
micrometer sized heat exchangers.

Piyush Grover
Mitsubishi Electric Research Labs

Date submitted: 02 Aug 2013
Electronic form version 1.4