Cutting, Splicing, and Kelvin Waves1 MARTIN SCHEELE,
DUSTIN KLECKNER, WILLIAM T.M. IRVINE, University of Chicago — Recent
experimental advances have allowed us to create, visualize and track vortices of pre-
scribed shape and topology in classical fluids. We study the effect of surgery (cutting
and splicing) on the evolution of the geometry and topology of these vortex loops,
with a particular focus on the wave-like excitations generated by these operations.
We interpret the dynamics of these excitations and the role they play within the
broader context of vortex evolution.

1This work was supported by the National Science Foundation Materials Research
and Engineering Centers (MRSEC) Program at the University of Chicago (DMR-
0820054) and the Packard Foundation through a Packard fellowship.