Contact Dynamics Models for Spacecraft-Regolith Interactions
CHRISTINE HARTZELL, MELANY HUNT, California Institute of Technology —
Granular mechanics simulations are currently used in the planetary science com-
munity in order to understand the evolution of asteroids, which are believed to be
self-gravitating conglomerates of boulders and smaller grains. These simulations are
typically done with Hard-Sphere or Soft-Sphere Discrete Element Method (DEM)
codes. However, asteroids are increasingly being considered as exploration targets
for the future spacecraft. Due to the very low gravity on the surface of these bodies
(in some cases, six orders of magnitude less than Earth’s gravity), it is not reason-
able to design sample collection devices or mobility systems for future spacecraft
based solely on Earth-based experimentation. However, there are limitations to
using DEM codes for dense granular systems. Thus, we are creating a Contact Dy-
namics model to aid in the design of future spacecraft. In addition to its necessity
for the design of spacecraft for asteroid exploration, granular mechanics simulations
will also reduce the cost and risk of designing future mobility and sample collection
systems for spacecraft heading to the Moon and Mars. We will present the current
status of our Contact Dynamics code for monodisperse, spherical grains.

1Funding provided by Keck Institute for Space Studies