Large Eddy Simulation of Mixing within a Hypervelocity Scramjet Combustor DAVID PETTY1, VINCENT WHEATLEY2, University of Queensland, CARLOS PANTANO3, University of Illinois at Urbana-Champaign, MICHAEL SMART4, University of Queensland — The turbulent mixing of parallel hypervelocity \((U = 3230 \text{ m/sec, } M = 3.86)\) air-streams with a sonic stream of gaseous hydrogen is simulated using large eddy simulation. The resultant mixing layers are characterized by a convective Mach number of 1.20. This configuration represents parallel slot injection of hydrogen via an intrusive centerbody within a constant area rectangular combustor. A hybrid shock-capturing/zero numerical dissipation (WENO/TCD) switch method designed for simulations of compressible turbulent flows was utilized. Sub-grid scale turbulence was modeled using the stretched vortex model. Visualizations of the three dimensional turbulent structures generated behind the centerbody will be presented. It has been observed that a span-wise instability of the wake behind the centerbody is initially dominant. Further downstream, the shear-layers coalesce into a mixing wake and develop the expected large-scale coherent span-wise vortices.

1Ph.D. Candidate, School of Mechanical and Mining Engineering, Centre for Hypersonics
2Senior Lecturer, School of Mechanical and Mining Engineering, Centre for Hypersonics
3Associate Professor of Mechanical Engineering
4Professor, School of Mechanical and Mining Engineering, Centre for Hypersonics

David Petty
University of Queensland

Date submitted: 02 Aug 2013