Space-time measurements in a shock wave/turbulent boundary layer interaction1 ANNE-MARIE SCHREYER, Aix-Marseille Universite, CNRS, IUSTI UMR 7343, Marseille / Centre National d’Etudes Spatiales CNES, DLA, Paris, PIERRE DUPONT, Aix-Marseille Universite, CNRS, IUSTI UMR 7343, Marseille, France — We study a reflected shock interaction with separation at Mach 2, contributing to a better understanding of rocket engine nozzle flows. The flow field contains a wide range of characteristic frequencies between $O(100)$Hz for the oscillation of the reflected shock and $O(100)$kHz for the turbulent microscales. To explain the origin and interdependence of the physical phenomena in the interaction, we need access to the spatio-temporal links. We thus require a measurement technique allowing the resolution of the entire frequency range while also providing sufficient spatial resolution and a large field of view. Our newly developed Dual-PIV system satisfies these requirements. First measurements with this system in an interaction flow field were performed in the continuous hypo-turbulent wind-tunnel at IUSTI at a momentum thickness Reynolds number of $Re_{\theta} = 5024$ and a deflection angle of $\theta = 8.75^\circ$. We present a detailed characterization of the flow field including turbulence measurements. From measurements at a range of temporal delays, we determined autocorrelations at crucial points in the flow field (incoming boundary layer, mixing layer, relaxation zone). From these, spatio-temporal information like the integral scales and the convection velocity are deduced.

1This work received financial support by the CNES within the research program ATAC and also the ANR within the program DECOMOS. This support is gratefully acknowledged.

Anne-Marie Schreyer
Aix-Marseille Universite, CNRS, IUSTI UMR 7343,
Marseille / Centre National d’Etudes Spatiales CNES, DLA, Paris

Date submitted: 22 Jul 2014 Electronic form version 1.4