On the connection between Maximum Drag Reduction and Newtonian fluid flow RICHARD WHALLEY, University of Liverpool, JAE-SUNG PARK, ANUBHAU KUSHWAHA, University of Wisconsin-Madison, DAVID DENNIS, University of Liverpool, MICHAEL GRAHAM, University of Wisconsin-Madison, ROBERT POOLE, University of Liverpool — To date, the most successful turbulence control technique is the dissolution of certain rheology-modifying additives in liquid flows, which results in a universal maximum drag reduction (MDR) asymptote. The MDR asymptote is a well-known phenomenon in the turbulent flow of complex fluids; yet recent direct numerical simulations of Newtonian fluid flow have identified time intervals showing key features of MDR. These intervals have been termed “hibernating turbulence” and are a weak turbulence state which is characterised by low wall-shear stress and weak vortical flow structures. Here, in this experimental investigation, we monitor the instantaneous wall-shear stress in a fully-developed turbulent channel flow of a Newtonian fluid with a hot-film probe whilst simultaneously measuring the streamwise velocity at various distances above the wall with laser Doppler velocimetry. We show, by conditionally sampling the streamwise velocity during low wall-shear stress events, that the MDR velocity profile is approached in an additive-free, Newtonian fluid flow. This result corroborates recent numerical investigations, which suggest that the MDR asymptote in polymer solutions is closely connected to weak, transient Newtonian flow structures.

Richard Whalley
University of Liverpool

Date submitted: 23 Jul 2014

Electronic form version 1.4