Abstract Submitted for the DFD14 Meeting of The American Physical Society

Free flight simulations of a dragonfly-like flapping wing-body model by the immersed boundary-lattice Boltzmann method¹ TAKAJI INAMURO, KEISUKE MINAMI, KOSUKE SUZUKI, Dept. Aeronautics and Astronautics, Kyoto University — Free flights of the dragonfly-like flapping wing-body model are numerically investigated by using the immersed boundary-lattice Boltzmann method (IB-LBM). First, we simulate free flights of the model without the pitching rotation for various values of the phase lag angle ϕ between the forewing and the hindwing motions. We find that the wing-body model goes forward in spite of ϕ , and the model with $\phi = 0^{\circ}$ and 90° goes upward against gravity. The model with $\phi = 180^{\circ}$ goes almost horizontally, and the model with $\phi = 270^{\circ}$ goes downward. Secondly, we simulate free flights with the pitching rotation for various values of the phase lag angle ϕ . It is found that in spite of ϕ the wing-body model turns gradually in the nose-up direction and goes back and down as the pitching angle $\Theta_{\rm c}$ increases. That is, the wing-body model cannot make a stable forward flight without control. Finally, we show a way to control the pitching motion by changing the lead-lag angle $\gamma(t)$. We propose a simple proportional controller of $\gamma(t)$ which makes stable flights within $\Theta_{\rm c} = \pm 5^{\circ}$ and works well even for a large disturbance.

 $^{1}\mathrm{The}$ authors acknowledge the HPCI System Research Project (Project ID: hp120112)

Takaji Inamuro Dept. Aeronautics and Astronautics, Kyoto University

Date submitted: 28 Jul 2014

Electronic form version 1.4