Locating coherent material vortices in three-dimensional unsteady flows DAVID OETTINGER, DANIEL BLAZEVSKI, GEORGE HALLER, ETH Zurich — Recent work has shown that coherent material vortices in two-dimensional unsteady flows are bounded by closed stationary curves of the averaged material strain [1]. These material vortex boundaries are objective (frame-invariant) Lagrangian coherent structures (LCSs) of the elliptic type, which turn out to stretch uniformly under the flow. We extend this approach to three-dimensional unsteady flows to locate toroidal and cylindrical material vortex boundaries as two-dimensional, elliptic LCS surfaces. We provide a detailed numerical procedure building on the approach in [2] and discuss several examples.


1Full address: Institute for Mechanical Systems, ETH Zurich, Tannenstrasse 3, 8092 Zurich, Switzerland