Large eddy simulation of a wing-body junction flow

1 SUNG-MIN RYU, MICHAEL EMORY, ALEJANDRO CAMPOS, Stanford University, KARTHIK DURAISAMY, University of Michigan, GIANLUCA IACCARINO, Stanford University — We present numerical simulations of the wing-body junction flow experimentally investigated by Devenport & Simpson (1990). Wall-junction flows are common in engineering applications but relevant flow physics close to the corner region is not well understood. Moreover, performance of turbulence models for the body-junction case is not well characterized. Motivated by the insufficient investigations, we have numerically investigated the case with Reynolds-averaged Naiver-Stokes equation (RANS) and Large Eddy Simulation (LES) approaches. The Vreman model applied for the LES and SST k-ω model for the RANS simulation are validated focusing on the ability to predict turbulence statistics near the junction region. Moreover, a sensitivity study of the form of the Vreman model will also be presented.

1This work is funded under NASA Cooperative Agreement NNX11AI41A (Technical Monitor Dr. Stephen Woodruff)

Sungmin Ryu
Stanford Univ

Date submitted: 31 Jul 2014
Electronic form version 1.4