Abstract Submitted
for the DFD14 Meeting of
The American Physical Society

Positivity-preserving and entropy-bounded Discontinuous Galerkin method for conservation laws YU LV, MATTHIAS IHME, Stanford University — Although Discontinuous Galerkin (DG) methods have gained considerable success for application to advection-dominated flows, the robustness and the treatment of geometric singularities and flow-field discontinuities remain open problems. In this talk, a DG-method is formulated that is positivity-preserving and entropy-bounded to guarantee algorithmic stability and conservation. After demonstrating the efficacy in one- and two-dimensional tests, this formulation is generalized to unstructured and curvilinear meshes. Details on the algorithmic implementation are presented, and applications to complex geometries in three dimensions are discussed.

1Yu Lv was graduated from Zhejiang University, China for his undergraduate. At 2011, he got his Master’s degree for aero, University of Michigan. Now he is working at Stanford as a Ph.D research assistant.