Abstract Submitted for the DFD14 Meeting of The American Physical Society

Growth of mushy layers with temperature modulations¹ GUANG-YU DING, CHAO WU, JIN-QIANG ZHONG, Tongji University, Shanghai, China — Directional solidification of aqueous solutions produces a solid-melt coexisting zone whose growth rate can be predicted by the mushy-layer theory. We present measurements of mushy-layer growth when solidifying aqueous ammonium chloride with the cooling temperature modulated periodically $T_B(t) = T_0 + Acos(\omega t)$. The mush-liquid interface h(t) evolves as the square root of time for a constant T_B , but exhibits periodical humps in the present of modulations. The growth rate $\dot{h}(t)$ is best approximate to $\dot{h}(t) = \dot{h}_0 e^{-\gamma \omega t/2\pi} cos(\omega t + \pi + \phi(t))$, with a decay rate $\gamma = 0.82\pm0.05$ independent on the modulation amplitude A and frequency ω , and a phase-shift $\phi(t)$ increasingly lag behind T_B as a function of time. We discuss a mushy-layer growth model based on the Neumann solution of the Stefan problem with periodical boundary conditions, and show that the numerical results are in agreement with the experimental observations.

¹Supported by NSFC Grant 11202151.

Jin-Qiang Zhong Tongji University, Shanghai, China

Date submitted: 01 Aug 2014

Electronic form version 1.4