Growth of mushy layers with temperature modulations

GUANG-YU DING, CHAO WU, JIN-QIANG ZHONG, Tongji University, Shanghai, China

— Directional solidification of aqueous solutions produces a solid-melt coexisting zone whose growth rate can be predicted by the mushy-layer theory. We present measurements of mushy-layer growth when solidifying aqueous ammonium chloride with the cooling temperature modulated periodically \(T_B(t) = T_0 + A \cos(\omega t) \). The mush-liquid interface \(h(t) \) evolves as the square root of time for a constant \(T_B \), but exhibits periodical humps in the present of modulations. The growth rate \(\dot{h}(t) \) is best approximate to \(\dot{h}(t) = h_0 e^{-\gamma \omega t/2} \cos(\omega t + \pi + \phi(t)) \), with a decay rate \(\gamma = 0.82 \pm 0.05 \) independent on the modulation amplitude \(A \) and frequency \(\omega \), and a phase-shift \(\phi(t) \) increasingly lag behind \(T_B \) as a function of time. We discuss a mushy-layer growth model based on the Neumann solution of the Stefan problem with periodical boundary conditions, and show that the numerical results are in agreement with the experimental observations.

\(^{1}\)Supported by NSFC Grant 11202151.