Instability evolution in shock-accelerated inclined heavy gas cylinder

DELL OLMSTEAD, PATRICK WAYNE, PETER VOROBIEFF, DANIEL DAVIS, C. RANDALL TRUMAN, The University of New Mexico — A heavy gas cylinder interacts with a normal or oblique shockwave at Mach numbers M ranging from 1.13 to 2.0. The angle between the shock front and cylinder axis is varied between 0 and 30°, while the Atwood numbers A range from 0.25 (SF$_6$-N$_2$ mix) to 0.67 (pure SF$_6$). The evolution of the column is imaged in two perpendicular planes with Planar Laser Induced Fluorescence (PLIF). For oblique shock interactions, the nature of the flow is fully three-dimensional, with several instabilities developing in separate directions. In the plane that captures a cross-section of the column, Richtmyer-Meshkov instability (RMI) leads to formation of a pair of counter-rotating vortex columns. A uniform scaling appears to govern the primary instability growth in this plane across the M and A ranges, when the length scale is normalized by a product of the minimum streamwise scale after shock compression and $M^{0.5}$. In the vertical plane through the column, Kelvin-Helmholtz vortices form with regular spacing along the column. The dominant wavelength of the structures in the vertical plane also appears to scale with the minimum compressed streamwise length.

This research is supported by the US DOE National Nuclear Security Administration (NNSA) grant DE-NA0002220.

Peter Vorobieff
The University of New Mexico

Date submitted: 01 Aug 2014