Abstract Submitted
for the DFD14 Meeting of
The American Physical Society

Adaptation of a Multi-Block Structured Solver for Effective Use in a Hybrid CPU/GPU Massively Parallel Environment DAVID GUTZWILLER, Numeca USA, MATHIEU GONTIER1, Numeca International, ALAIN DEMEULENAERE2, Numeca USA — Multi-Block structured solvers hold many advantages over their unstructured counterparts, such as a smaller memory footprint and efficient serial performance. Historically, multi-block structured solvers have not been easily adapted for use in a High Performance Computing (HPC) environment, and the recent trend towards hybrid GPU/CPU architectures has further complicated the situation. This paper will elaborate on developments and innovations applied to the NUMECA FINE/Turbo solver that have allowed near-linear scalability with real-world problems on over 250 hybrid GPU/GPU cluster nodes. Discussion will focus on the implementation of virtual partitioning and load balancing algorithms using a novel meta-block concept. This implementation is transparent to the user, allowing all pre- and post-processing steps to be performed using a simple, unpartitioned grid topology. Additional discussion will elaborate on developments that have improved parallel performance, including fully parallel I/O with the ADIOS API and the GPU porting of the computationally heavy CPUBooster convergence acceleration module.

1Head of HPC and Release Management, Numeca International
2Managing Director, Numeca USA

Date submitted: 01 Aug 2014

Electronic form version 1.4