Abstract Submitted
for the DFD14 Meeting of
The American Physical Society

Thermal Transport Phenomena in the Quasi-laminarization Process of Turbulent Boundary Layers LUCIANO CASTILLO, GUILLERMO ARAYA, FAZLE HUSSAIN, Texas Tech University — Direct Numerical Simulation of a spatially evolving turbulent boundary layer subject to strong favorable pressure gradient (SFPG) with eventual quasi-laminarization has been performed to include the thermal field. In this talk, the following questions will be addressed: i) to which extent the Reynolds analogy is satisfied during flow laminarization? ii) can the thermal boundary layer under quasi-laminarization be described as two quasi-independent inner/outer regions? To the best of our knowledge, documented investigation regarding heat transfer phenomena associated with quasi-laminarization process of spatially developing boundary layers is rather scarce. In order to introduce realistic thermal inlet fluctuations in a SFPG we employed the multi-scale technique for thermal boundary layers devised by Araya and Castillo PoF (2013). Such methodology enable us to more effective capture the pressure gradient and thermal field than using a single scaling approach. It is shown that the Reynolds normal stresses for the streamwise component remains frozen in space while the wall-normal and spanwise components continue to decrease as the flow moves downstream and never becomes laminar due to the survival of the upstream turbulence during dissipation on viscous time scales.

Guillermo Araya
Texas Tech University

Date submitted: 01 Aug 2014

Electronic form version 1.4