Vortex formation in oblique shock interaction with a heavy gas column1 PATRICK WAYNE, DELL OLMSTEAD, C. RANDALL TRUMAN, PETER VOROBIEFF, The University of New Mexico, SANJAY KUMAR, University of Texas - Brownsville — In an oblique shockwave interaction with a column of heavy gas, we observe both the expected counter-rotating vortex pairs (same as caused by normal shockwaves) and periodic co-rotating vortices that vary with Mach number. We study the effects of oblique shock interaction with a column of acetone-infused sulfur-hexafluoride (SF\textsubscript{6}) gas. Visualization of the shock-accelerated gas column is accomplished via Planar Laser-Induced Fluorescence (PLIF) imaging. The shock tube itself is inclined at a 30\textdegree{} angle, while the initial conditions (ICs) are introduced into the test section vertically. Because of the inclined angle, the normal shock propagates down the shock tube and impacts the ICs at a 30\textdegree{} down-angle, producing an oblique shock. Vertical plane PLIF images reveal vorticity deposition between the SF\textsubscript{6} column and the surrounding air leading to Kelvin-Helmholtz instability. The evolving vortices cascade down the entire vertical length of the gas column, and interact with the counter-rotating vortex structures along the column. The most interesting aspect of this discovery is that these small-scale instabilities exhibit periodic behavior and, according to preliminary data, this behavior is Mach number dependent.

1This research is supported by the US DOE National Nuclear Security Administration (NNSA) grant DE-NA0002220.

Peter Vorobieff
The University of New Mexico

Date submitted: 01 Aug 2014