Investigation of Drag Coefficient for Rigid Ballute-like Shapes1

MARIA-ISABEL CARNASCIALI, ANTHONY MASTROMARINO, Univ of New Haven — One common method of decelerating an object during atmospheric entry, descent, and landing is the use of parachutes. Another deceleration technology is the ballute—a combination of balloon and parachute. A CFD study was conducted using commercially available software to investigate the flow-field and the coefficient of drag for various rigid ballute-like shapes at varying Reynolds numbers. The impact of size and placement of the burble-fence as well as number, size, and shape of inlets was considered. Recent experimental measurements conducted during NASA’s Low-Density Supersonic Decelerator program revealed a much higher coefficient of drag (C_d) for ballutes than previously encountered. Using atmospheric drag to slow down and land reduces the need for heavy fuel and rocket engines and thus, high values of drag are desired.

1Funding for this work, in part, provided by the CT Space Grant Consortium.