Abstract Submitted for the DFD14 Meeting of The American Physical Society

Francois N. Frenkiel Award Talk: Relevance of the Thorpe length scale in stably stratified turbulence BENJAMIN D. MATER, SIMON M. SCHAAD, S. KARAN VENAYAGAMOORTHY, Colorado State University — A relatively simple and objective measure of large-scale vertical overturns in turbulent oceanic flows is the Thorpe length scale, L_T . Reliance on common scaling between the Ozmidov length scale L_O (which is a measure of the size of largest eddy unaffected by buoyancy in stratified turbulence) and L_T is commonplace in the field of oceanography to infer the dissipation rate of turbulent kinetic energy ε . In this study, we use direct numerical simulations (DNS) of stably stratified turbulence to compare the Thorpe overturn length scale, L_T , with other length scales of the flow that can be constructed from large-scale quantities fundamental to shear-free, stratified turbulence. Quantities considered are the turbulent kinetic energy, k, its dissipation rate, ε , and the buoyancy frequency, N. Fundamental length scales are then the Ozmidov length scale, L_O , the isotropic large scale, $L_{k\varepsilon}$, and a kinetic energy length scale, L_{kN} . Behavior of all three fundamental scales, relative to L_T , is shown to be a function of the buoyancy strength parameter NT_L , where $T_L = k/\varepsilon$ is the turbulence time scale. When buoyancy effects are dominant (i.e., for $NT_L > 1$), L_T is shown to be linearly correlated with L_{kN} and not with L_O as is commonly assumed for oceanic flows. Agreement between L_O and L_T is only observed when the buoyancy and turbulence time scales are approximately equal (i.e., for the critical case when $NT_L \approx 1$). The relative lack of agreement between L_T and L_O in strongly stratified flows is likely due to anisotropy at the outer scales of the flow where the energy transfer rate differs from ε . The key finding of this work is that observable overturns in strongly stratified flows are more reflective of k than ε . In the context of oceanic observations, this implies that inference of k, rather than ε , from measurements of L_T is fundamentally correct when $NT_L \approx 1$ and most appropriate when $NT_L > 1$. Furthermore, we show that for $NT_L < 1$, L_T is linearly correlated with L_L when mean shear is absent Colorado State University with $L_{k\varepsilon}$, when mean shear is absent.

Date submitted to the Date of the Date of