Abstract Submitted
for the DFD15 Meeting of
The American Physical Society

Front conditions for gravity currents in channels of general cross-section: some general conclusions MARIUS UNGARISH, Technion, Israel Institute of Technology — We consider the propagation of a high-Reynolds-number gravity current in a horizontal channel with general cross-section of width $f(z)$, $0 \leq z \leq H$; the gravity acceleration g acts in $-z$ direction. (The rectangular case is $f(z) = \text{const.}$) We assume a two-layer system of fluids of densities ρ_c (current, of height h) and ρ_a (ambient, filling the remaining part of the channel). We revisit the derivation of the nose Froude-number condition $Fr = U/(g'h)^{1/2}$; U is the speed of propagation of the current and $g' = (\rho_c/\rho_a - 1)g$. We present compact insightful expressions of Fr and energy dissipation as a functions of φ (= area fraction occupied by the current in the cross-section), and show that a degree of freedom is present. We demonstrate that the extension of the closure suggested by Benjamin for the rectangular cross-section, namely that the bottom is a perfect stagnation line, produces Fr solutions which are optimal with respect to several useful criteria. However, the energy conserving closure yields problematic Fr results, as manifest in particular by invalidity for deep currents (small h/H). Connection with realistic time-dependent gravity currents is discussed.

Marius Ungarish
Technion

Date submitted: 01 Jul 2015

Electronic form version 1.4