Abstract Submitted
for the DFD15 Meeting of
The American Physical Society

PIV investigation of the intake flow in a parallel valves diesel engine cylinder

P. HENRIK ALFREDSSON, JEAN RABAULT, JULIE A. VERNET, Kungliga Tekniska Högskolan KTH, BJÖRN LINDGREN, Scania CV AB — The flow of air (gas) inside the cylinder of internal combustion engines prior to compression may have a large influence on the combustion process. The structure of the in-cylinder flow, which can be swirl or tumble dominated, is to a large extent controlled by the design of the intake ports. In this study the admission flow generated by a parallel valves diesel engine cylinder head was investigated in a steady flow test bench through planar and stereo PIV measurements in both the swirl and tumble planes. By combining several sets of measurements a full three-dimensional, three-component reconstruction of the mean flow field was made. The flow out of the valves has a radial jet character, making the air hit the cylinder wall before flowing down along the cylinder wall. This leads to the formation of a recirculation bubble in the tumble plane. In the swirl plane complex jet dominated structures are found just below the valves giving rise to a counter-rotating vortex pair, where the strongest vortex becomes predominant giving rise to a single coherent swirling structure away from the cylinder head. Variations of the location and strength of the swirling structure may give rise to cycle-to-cycle variations and its stability was analysed by tracking the vortex centre.

1Supported by SSF, Swedish Foundation for Strategic Research and Scania CV AB

P. Henrik Alfredsson
Kungliga Tekniska Högskolan KTH

Date submitted: 17 Jul 2015