Abstract Submitted for the DFD15 Meeting of The American Physical Society

Entrainment dynamics in self-adjusting gravity currents using simultaneous velocity-density measurements¹ SRIDHAR BALASUBRAMA-NIAN, Department of Mechanical Engineering, Indian Institute of Technology Bombay, QIANG ZHONG, HARINDRA FERNANDO², Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, USA — Gravity currents can modify their flow characteristic by entraining and mixing with the ambient fluid. The entrainment in such systems may depend on a variety of intrinsic parameters such as, initial density difference, $\Delta \rho$, total height of the fluid, H, and slope of the terrain, α . Thus, it is imperative to study the entrainment dynamics of a gravity current in order to have a clear understanding of the mixing transitions that govern the flow physics such as the shear layer thickness, δ_u , and the mixing layer thickness, δ_{ρ} . Experiments were conducted in a lock-exchange type facility, where a self-adjusting gravity current is formed, for which the only govern-ing parameter is the Reynolds number, $\text{Re}=\frac{u_f H}{\nu}$, where $u_f=0.4\sqrt{g'H}$ is the frontal velocity. Simultaneous PIV-PLIF technique is employed to get the velocity and density statistics. A control volume based flux method is used to calculate the flux entrainment coefficient, E_f , for a Reynolds number range of Re=400-12000 used in our experiments. The results show transition at Re 4×10^3 , where the mixing occurs due to Kelvin-Helmholtz billows that promote small scale local mixing, and cause a spike in the flux entrainment velocity.

¹SB acknowledges funds from University of Notre Dame, IIT Bombay ²Aerospace and Mechanical Engineering, University of Notre Dame

> Sridhar Balasubramanian Department of Mechanical Engineering, Indian Institute of Technology Bombay

Date submitted: 17 Jul 2015

Electronic form version 1.4