Wenzel Wetting on Slippery Rough Surfaces

BIRGITT STOGIN, XIANMING DAI, TAK-SING WONG, Pennsylvania State Univ — Liquid repellency is an important surface property used in a wide range of applications including self-cleaning, anti-icing, anti-biofouling, and condensation heat transfer, and is characterized by apparent contact angle (θ*) and contact angle hysteresis (Δθ*). The Wenzel equation (1936) predicts θ* of liquids in the Wenzel state [1], and is one of the most fundamental equations in the wetting field. However, droplets in the Wenzel state on conventional rough surfaces exhibit large Δθ*, making it difficult to experimentally verify the model with precision. As a result, precise verification of the Wenzel wetting model has remained an open scientific question for the past 79 years. Here we introduce a new class of liquid-infused surfaces [2] called slippery rough surfaces — surfaces with significantly reduced Δθ* compared to conventional rough surfaces—and use them to experimentally assess the Wenzel equation with the highest precision to date.


1We acknowledge the funding support by National Science Foundation (NSF) CAREER Award #: 1351462 and Office of Navy Research MURI Award #: N00014-12-1-0875. Stogin acknowledges the support from the NSF Graduate Research Fellowship (Grant No. DGE1255832).

Birgitt Stogin
Pennsylvania State Univ

Date submitted: 24 Jul 2015

Electronic form version 1.4