Buoyancy and blockage effects on transient laminar opposing mixed convection heat transfer from two horizontal confined isothermal cylinder in tandem

LORENZO MARTÍNEZ-SUÁSTEQUI, ESIME Azcapotzalco, Instituto Politécnico Nacional, ERICK SALCEDO, Departamento de Termofluidos, Facultad de Ingeniería, UNAM, JUAN CAJAS, Barcelona Supercomputing Center (BCS-CNS), Edificio NEXUS I, Campus Nord UPC, Gran Capitán 2-4, CESAR TREVIÑO, UMDI, Facultad de Ciencias, Universidad Nacional Autónoma de México, SISAL — Transient mixed convection in a laminar cross-flow from two isothermal cylinders in tandem arrangement confined inside a vertical channel is studied numerically using the vorticity-stream function formulation of the unsteady two-dimensional Navier-Stokes and energy equations. Numerical experiments are performed for a Reynolds number based on cylinder diameter of Re = 200, Prandtl number of Pr = 7, blockage ratio of D/H = 0.2, a pitch-to-diameter ratio of L/D = 2, and several values of buoyancy strength or Richardson number Ri = Gr/Re². The results reported herein demonstrate how the wall confinement, interference effects and opposing buoyancy affect the flow structure and heat transfer characteristics of the cylinder array.

This research was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT), Grant number 167474 and by the Secretaría de Investigación y Posgrado del IPN, Grant number SIP 20141309.