New approaches to the design optimization of hydrofoils
POORIYA BEYHAGHI, GIANLUCA MENEGHELLO, THOMAS BEWLEY, University of California San Diego — Two simulation-based approaches are developed to optimize the design of hydrofoils for foiling catamarans, with the objective of maximizing efficiency (lift/drag). In the first, a simple hydrofoil model based on the vortex-lattice method is coupled with a hybrid global and local optimization algorithm that combines our Delaunay-based optimization algorithm with a Generalized Pattern Search. This optimization procedure is compared with the classical Newton-based optimization method. The accuracy of the vortex-lattice simulation of the optimized design is compared with a more accurate and computationally expensive LES-based simulation. In the second approach, the (expensive) LES model of the flow is used directly during the optimization. A modified Delaunay-based optimization algorithm is used to maximize the efficiency of the optimization, which measures a finite-time averaged approximation of the infinite-time averaged value of an ergodic and stationary process. Since the optimization algorithm takes into account the uncertainty of the finite-time averaged approximation of the infinite-time averaged statistic of interest, the total computational time of the optimization algorithm is significantly reduced. Results from the two different approaches are compared.

Pooriya Beyhaghi
University of California San Diego

Date submitted: 27 Jul 2015

Electronic form version 1.4