Abstract Submitted
for the DFD15 Meeting of
The American Physical Society

Rearrangement dynamics of concentrated emulsions in a tapered micro-channel
YA GAI, Department of Aeronautics and Astronautics, Stanford University, CLAUDIU STAN, SLAC National Accelerator Laboratory, SINDY TANG, Department of Mechanical Engineering, Stanford University — We describe the flow of a monolayer of monodisperse droplets within a high-volume-fraction emulsion in a tapered micro-channel. The flow of droplets in micro-channels can be non-trivial, and may lead to unexpected phenomena such as long-period oscillations and chaos. Previously, there have been studies on concentrated emulsions in straight channels and channels with bends. The dynamics of how drops flow and rearrange in a tapered geometry has not yet been characterized. At sufficiently slow flow rates, the drops arrange into a hexagonal lattice. At a given x-position, the time-averaged droplet velocity magnitudes are uniform. The instantaneous drop velocities, however, reveal a different pattern. A wave-like pattern is observed from the kymograph of droplet velocities at a fixed x-position in the channel where the number of rows of drops decreases from N to N-1. Such wave-like pattern arises from the collective slipping motion of the drops in the rearrangement zones along the 60 degrees axes, the easy slip directions of a hexagonal lattice. To our knowledge, such reproducible slipping motion has not been reported. Current work is in progress to identify the physical factors that govern such slipping motion.

Ya Gai
Stanford Univ

Date submitted: 28 Jul 2015

Electronic form version 1.4