Abstract Submitted for the DFD15 Meeting of The American Physical Society

On the thrust performance of a 2D flapping foil in a forward flight condition SUNIL MANOHAR DASH, KIM BOON LUA, TEE TAI LIM, National University of Singapore — Past studies have shown that the thrust performance of a 2D airfoil undergoing simple harmonic motion in both pitch and heave in a forward flight condition is dependent on maximum effective angle of attack (α_0) and Strouhal number (S_T) . For a given α_0 , it is found that the thrust coefficient (C_T) increases with S_T until it reaches a peak value at the critical Strouhal number (S_{Tc}) ; beyond which C_T deteriorates considerably. In order to extend S_{Tc} and therefore increase the max. C_T , the airfoil must oscillate at a higher α_0 . Further, it is found that, regardless of α_0 thrust degeneration is accompanied by cessation of the induced effective angle of attack profile $(\alpha(t))$ to exhibit simple harmonic function of time. As to why non simple harmonic function of $\alpha(t)$ is detrimental to thrust generation is not fully understood. In an attempt to better understand this phenomenon, both numerical simulations and comparative experiments are performed on a 2D flapping elliptic foil at Re of 5000. Our results show that the proximity of the leading edge vortex from the previous stroke to the oscillating foil plays a crucial role in the thrust generation. Detailed results will be discussed in the presentation.

> Sunil Manohar Dash National University of Singapore

Date submitted: 29 Jul 2015

Electronic form version 1.4