Large scale motions of thermal transport in a turbulent channel

SURANGA DHARMARATHNE, Texas Tech University, USA, MURAT TUTKUN, Institute for Energy Tecnology, Norway, GUILLERMO ARAYA, Texas Tech University, USA, STEFANO LEONARDI, University of Texas at Dallas, USA, LUCIANO CASTILLO, Texas Tech University, USA — The importance of large scale motions (LSMs) on thermal transport in a turbulent channel flow at friction number of 394 is investigated. Two-point correlation analysis reveals that LSM which significantly contribute to turbulence kinetic energy and scalar transport is a reminiscent of a hairpin packet. Low-order mode representation of the original fields using proper orthogonal decomposition (POD) unveils that the most dominant mode that transports $\langle u'^2 \rangle$ is 3-4 channel half-heights long and such structure which contribute to scalar transport is 2-4 channel half-heights long. Consequently, the study discloses that LSMs are effective in transporting both streamwise component of turbulence kinetic energy and scalar variances.

Suranga Dharmarathne
Texas Tech University

Date submitted: 29 Jul 2015

Electronic form version 1.4