Driven drops with contact line damping YI XIA, CHUN-TI CHANG, PAUL STEEN, Cornell University — A water droplet placed on a hydrophobic plate is driven by plate-normal oscillations. Resulting droplet motions are largely inviscid, having Reynolds number ≈ 100 (Ohnesorge 0.002). We are interested in isolating the effective damping, sometimes called Davis dissipation, owing to a moving contact line that is not completely mobile. In this talk, we report energy budgets as influenced by contact angle – contact line speed relationships for variously prepared surfaces.