Dynamics of the tetrad-based velocity gradient in turbulent flows

HAITAO XU, Center for Combustion Energy, Tsinghua University, Beijing 100084, China and MPI Dynamics & Self-Organization (MPIDS), Goettingen 37077, Germany, ALAIN PUMIR, ENS Lyon, Lyon 69007, France, EBERHARD BODENSCHATZ, MPI Dynamics & Self-Organization (MPIDS), Goettingen 37077, Germany — We investigate the structure and evolution of turbulent flows with the help of the perceived velocity-gradient, determined from four fluid particles initially forming a regular tetrad of size r_0. The main feature of the turbulent dynamics can be conveniently captured by a reduced description, in terms of two invariants of the velocity gradient. When r_0 is in the inertial range of scales, the evolution of averaged quantities can be parametrized by two dimensionless parameters, which vary slowly with r_0. We also characterize the fluctuations around the conditional mean, which represent the dynamics at scales below r_0. Using data from both Lagrangian particle tracking experiments and DNS, we show that the behavior qualitatively follows some earlier theoretical prediction, but with interesting new features.