A Mathematical Proof of the Vortex Shedding Mechanism1

MICHAEL BOGHOSIAN, KEVIN CASSEL, Illinois Inst of Tech — A novel mechanism leading to vortex splitting and subsequent shedding that is valid for both inviscid or viscous flows and external, internal, or wall-bounded flows is described. The mechanism, termed the Vortex-Shedding Mechanism (VSM), is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Previous simulations of various flows have demonstrated the VSM numerically. Here, we present a mathematical proof of the VSM that is shown to be both a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The proof includes relating the positive divergence of the net force, condition (2) above, with the second invariant of the velocity gradient tensor, i.e. the Q-criterion. It is shown that the Q-criterion is identical to the determinant of the Hessian matrix for the streamfunction. As a result, the second-partial-derivative test on this Hessian matrix can provide a qualitative description on the behavior of the streamfunction, and thus vortices or recirculation regions, near critical points.

1Supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (R01 DK90769)