A formal derivation for the Blasius similarity solution for flat-plate boundary layer HAO LIN, Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey — The Blasius solution is a classical solution for a laminar boundary layer attached to a semi-infinite flat plate. The key of the solution strategy is to reduce the boundary layer equations, which are PDEs, to a set of ODEs, using a similarity variable transform. Conceptually, the similarity suggests that the velocity profile in each transverse cross-section appears “self-similar”. In many classical text books and typical classroom lectures on fluid mechanics, the existence of the similarity solution is argued heuristically. The similarity variable is defined \textit{a priori} so as to collapse the PDEs. It appears somewhat mystical that the PDEs can be perfectly reduced via such an approach. Here we present a rigorous derivation for the existence of a similarity solution, which naturally arises from the fact that there is no apparent streamwise length scale for a semi-infinite plate. Conversely, a similarity solution cannot exist if the plate size is finite. This derivation can be useful in fluids education, in topics including similarity, scaling arguments, and boundary layer theory.

Hao Lin
Department of Mechanical and Aerospace Engineering,
Rutgers, The State University of New Jersey

Date submitted: 31 Jul 2015