Turbulent boundary layer over 2D and 3D large-scale wavy walls
LEONARDO P. CHAMORRO, ALI M. HAMED, University of Illinois at Urbana-Champaign, LUCIANO CASTILLO, Texas Tech University — In this work, an experimental investigation of the developing and developed flow over two- and three-dimensional large-scale wavy walls was performed using high-resolution planar particle image velocimetry in a refractive-index-matching flume. The 2D wall is described by a sinusoidal wave in the streamwise direction with amplitude to wavelength ratio $a/\lambda_x = 0.05$. The 3D wall is defined with an additional wave superimposed on the 2D wall in the spanwise direction with $a/\lambda_y = 0.1$. The flow was characterized at Reynolds numbers of 4000 and 40000, based on the bulk velocity and the flume half height. Instantaneous velocity fields and time-averaged turbulence quantities reveal strong coupling between large-scale topography and the turbulence dynamics near the wall. Turbulence statistics show the presence of a well-structured shear layer that enhances the turbulence for the 2D wavy wall, whereas the 3D wall exhibits different flow dynamics and significantly lower turbulence levels, particularly for $\langle u'v' \rangle$ which shows about 30% reduction. The likelihood of recirculation bubbles, levels and spatial distribution of turbulence, and the rate of the turbulent kinetic energy production are shown to be severely affected when a single spanwise mode is superimposed on the 2D wall. POD analysis was also performed to further understand distinctive features of the flow structures due to surface topography.

Leonardo P. Chamorro
University of Illinois at Urbana-Champaign

Date submitted: 31 Jul 2015 Electronic form version 1.4