Determining the optimal smoothing length scale for actuator line
models of wind turbine blades¹ LUIS MARTINEZ, CHARLES MENEVEAU,
Johns Hopkins University — The actuator line model (ALM) is a widely used tool
for simulating wind turbines when performing Large-Eddy Simulations. The ALM
uses a smearing kernel \(\eta_c = \frac{1}{\epsilon^3} \pi^{3/2} \exp \left(\frac{-r^2}{\epsilon^2} \right) \), where \(r \) is the distance to an
actuator point, and \(\epsilon \) is the smoothing length scale which establishes the kernel
width, to project the lift and drag forces onto the grid. In this work, we develop
formulations to establish the optimum value of the smoothing length scale \(\epsilon \), based
on physical arguments, instead of purely numerical constraints. This parameter has
a very important role in the ALM, to provide a length scale, which may, for example,
be related to the chord of the airfoil being studied. In the proposed approach, we
compare features (such as vertical pressure gradient) of a potential flow solution
for flow over a lifting surface with features of the solution of the Euler equations
with a body force term. The potential flow solution over a lifting surface is used
as a general representation of an airfoil. The method presented aims to minimize
the difference between these features of the flow fields as a function of the smearing
length scale (\(\epsilon \)), in order to obtain the optimum value.

¹This work is supported by NSF (IGERT and IIA-1243482) and computations use
XSEDE resources.